All new
Data Science
jobs, in one place.

Updated daily to help you be the first to apply ⏱

Machine Learning Research Engineer
  • Machine Learning
  • Modeling
  • Hadoop
  • Deep Learning
  • Reinforcement Learning
  • Bayesian
  • PyTorch
116 days ago

Who we are:

At Twitter, we would like to connect people with the conversations, topics and content that are most relevant to them, in real-time.

We are a community of Machine Learning Researchers and Engineers, working to drive Twitter’s research in recommender systems. We work as embedded researchers amongst product teams through a range of systems - e.g. timelines ranking, push notifications, email notifications, ads. We operate at scale whilst ensuring fair and ethical use of our models and data.

What you will do:

Apply your research expertise to improve our ML-driven recommender system products, help us develop new solutions and unlock new directions, as well as analyse and optimise the systems we already have. You’ll work closely with product teams and mentor them on best practices for modern ML, and keep the wider team informed on the state-of-the-art. In addition, you will be in a strategic position to influence future roadmaps for Twitter’s recommender system products.

Who you are:

You have a depth of knowledge in a ML-driven field - e.g. Probabilistic modeling, Reinforcement learning, Deep learning etc and you are interested in applying your knowledge and skill set to one or more challenges of our product areas - e.g. media / content understanding, new item/user modeling, temporal modeling, model performance optimisation. You are passionate about the way we develop state-of-the-art technologies and are excited by the application of theory to real-world problems. You keep up to date with the latest developments in the field and look for ways to apply them to your current work/role.


Master, Post-graduate or PhD in computer science, machine learning, information retrieval, recommendation systems, natural language processing, statistics, math, engineering, operations research, or other quantitative discipline; or equivalent work experience

Good theoretical grounding in core machine learning concepts and techniques

Ability to perform comprehensive literature reviews and provide critical feedback on state-of-the-art solutions and how they may fit to different operating constraints.

Experience with a number of ML techniques and frameworks, e.g. data discretization, normalization, sampling, linear regression, decision trees, SVMs, deep neural networks, bandits, reinforcement learning etc

Familiarity with one or more DL software frameworks such as Tensorflow, PyTorch

Nice to haves:

Experience with large-scale systems and data, e.g. Hadoop, distributed systems

Publications in top conferences such as ICLR, NeurIPS, ICML, RECSYS, CVPR, ICCV, ECCV, etc

Experience with one or more of the following:

Natural Language Processing

Recommender Systems

Model optimisation

Prediction / Inference (e.g. Bayesian)

Online Learning

Reinforcement Learning

We are committed to an inclusive and diverse Twitter. Twitter is an equal opportunity employer. We do not discriminate based on race, ethnicity, color, ancestry, national origin, religion, sex, sexual orientation, gender identity, age, disability, veteran status, genetic information, marital status or any other legally protected status.

    Related Jobs

  • Data Analyst Fixed Term

    • Data Analysis
    Persimmon Homes
  • SAS Data Analyst

    • SAS
  • Data Scientist - Economist

    • Python
    • SQL
    • Machine Learning
    5 days ago
  • Data Scientist - Causal Inference

    • Python
    • Bayesian
    • Machine Learning
    5 days ago
  • Data Scientist - Algorithms

    • Machine Learning
    5 days ago